

Member of the SNC-Lavalin Group

How do we know Smart Motorways are safe?

NW CIHT Young Professionals Committee

Monday 27th November 2017

Welcome – today's speaker

John-Paul Doherty

Technical Authority for Operational Safety of Highways Atkins Transportation Manchester

9 Years of experience managing the operational safety of Smart Motorways.

Todays topic

"How do we know Smart Motorways are safe?"

An AA survey carried out in 2016 of more than 20,000 motorists found that 79 percent believed the loss of hard shoulders has made motorways less safe.

What is a smart motorway?

Controlled Motorway

- Variable Mandatory Speed Limits (VMSL);
- Controlled Motorway
- Queue Protection
- Manual signal setting

No change to layout or removal of hardshoulder

What is a smart motorway?

Dynamic Hardshoulder running

VMSL

Dynamic use of the hard shoulder with opening and closing of the hard shoulder for congestion management.

Driver information provided through portal gantries positioned at a nominal spacing of 800m, capable of providing above lane specific signaling and supporting information (VMS).

Emergency Refuge Areas (ERAs) at nominal 800m spacing.

Overhead direction signs mounted on gantries and cantilevers.

What is a smart motorway? All Lane Running

VMSL

Permanent conversion of the hard shoulder into a running lane, including through junction running.

Driver information provided through:

- Portal gantries positioned near the start of each link, capable of providing above lane specific signalling and supporting information (VMS); and
- Single VMS at a maximum spacing of 1500m capable of providing the same types of information but using pictograms, wickets etc.

Safe Havens at up to 2500m intervals.

Cantilever/post mounted signs. Portal gantry mounted direction signs only used to aid clarity in immediate vicinity of junctions or where complexity of road layout indicates that overhead direction signs provide greater clarity.

Todays topic

"How do we know Smart Motorways are safe?"

- 1. How do we define 'safe' and how can we prove it?
- 2. What risk work has been done to demonstrate safety?
- 3. What post opening evidence is there?
- 4. Can we make smart motorways safer?

What does 'safe' mean?

Acceptability

How safe do we want the road to be?

- UK roads are amongst the safest in the world.
- Motorways are safer than dual carriageways and single carriageways on the SRN.
 - KSI rate 9% higher on 3 lane APTR.
- The hardshoulder gives a false sense of safety:
 - Average 30 Killed or seriously injured.
 - 8% of all fatalities on motorway.
- Smart Motorway schemes are aimed at reducing congestion.
- Principles of ALARP apply to workers.

NW CIHT Young Professionals

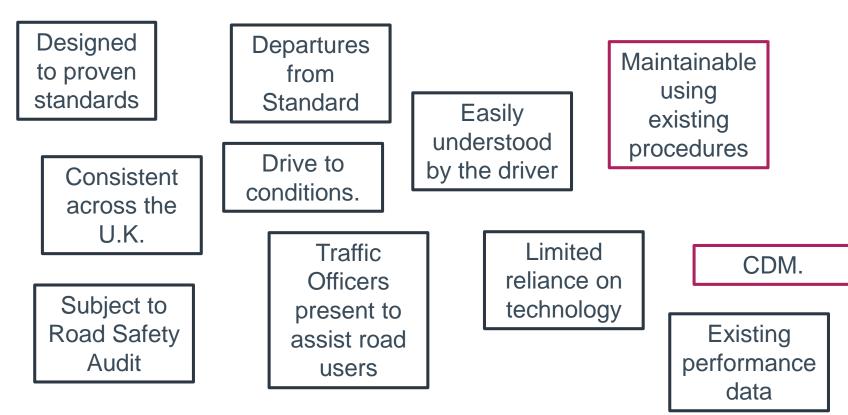
single

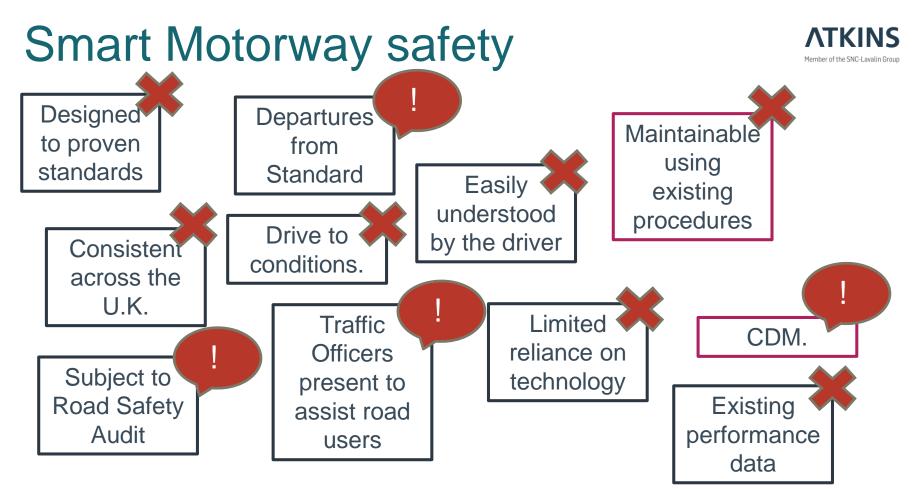
10

How safe do we want the road to be?

- UK roads are amongst the safest in the world.
- Motorways are safer than dual carriageway carriageways on the SRN.

Acceptability


- KSI rate 9% higher on 3 lane APTR.
- The hardshoulder gives a false sense of safe
 - Average 30 Killed or seriously injured
 - 8% of all fatalities on motorway.
- Smart Motorway schemes are aimed at reducing congestion.
- Principles of ALARP apply to workers.

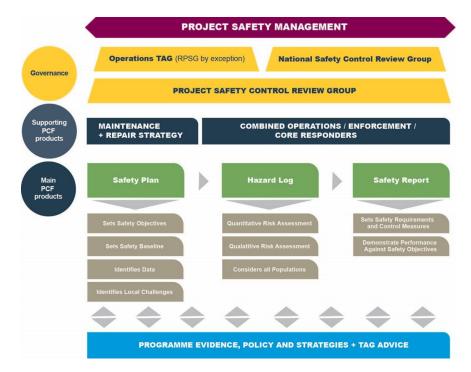

Target maintaining existing safety performance

'Traditional' scheme safety

Safety Objectives – Road Users

- The average number of FWI casualties per year is no worse than the safety baseline
- The rate of FWIs per billion vehicle miles per annum is no worse than the safety baseline
- For each link, no population (e.g. car drivers, pedestrians, HGV drivers and motorcyclists) is disproportionately adversely affected in terms of safety and risk to each population remains tolerable.

Safety Objectives – Road Workers

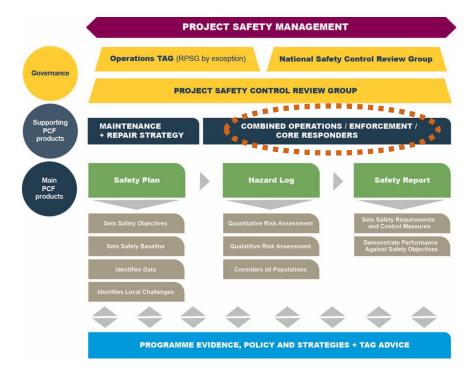

 There is no numerical objective or target for road worker accidents on SM-ALR schemes and the risk must be managed in accordance with the so far as is reasonably practicable (SFAIRP) principle. Member of the SNC-Lavalin Grou

Demonstrating the meeting of the safety objectives

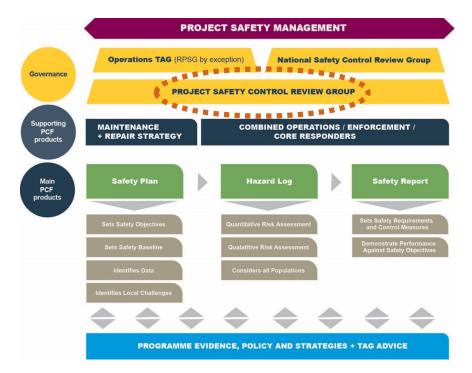
A new approach to managing risk

Process sits alongside and supports other processes. Mirrors process in rail industry.

A new approach to managing risk

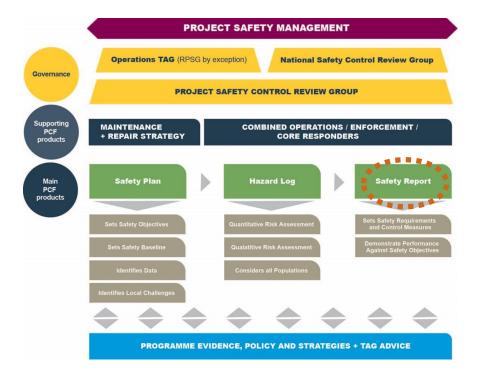


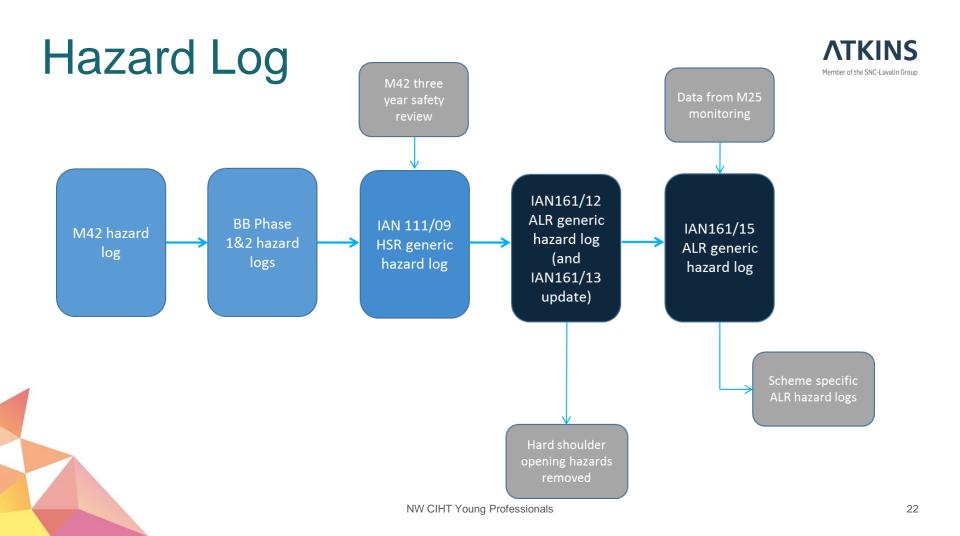
A new approach to managing risk



A new approach to managing risk

A new approach to managing risk




- Core membership.
- 'Endorse' Type A & B Issues.
- Escalate Type C Issues.
- Approve Safety PCF Products.
- Verification role.
- Has scheme met its safety objective?

A new approach to managing risk

Hazard Log content

- List of 100 hazards, each with 'before' and 'after' risk assessment.
- Individual assessments for key hazards (mainly before score)
- List of assumptions.
- Risk assessment methodology.
- Summary of results.
- Graphic results for all users overall, traffic officers, pedestrians.

Hazard Log – States and hazards

An Event (E) is a hazard which occurs momentarily, e.g. a vehicle carries out a high-risk lane change. Usually it is not meaningful to talk of how long such a hazard exists for. It is more relevant to understand how often this event occurs

A State (S) hazard is one which is present for a period of time e.g. vehicle stopped on hard shoulder – the longer it is present, the greater the risk. Such hazards will have a measurable duration and can persist for long periods. Therefore it is important to understand how long the state exists (as well as how often it occurs)

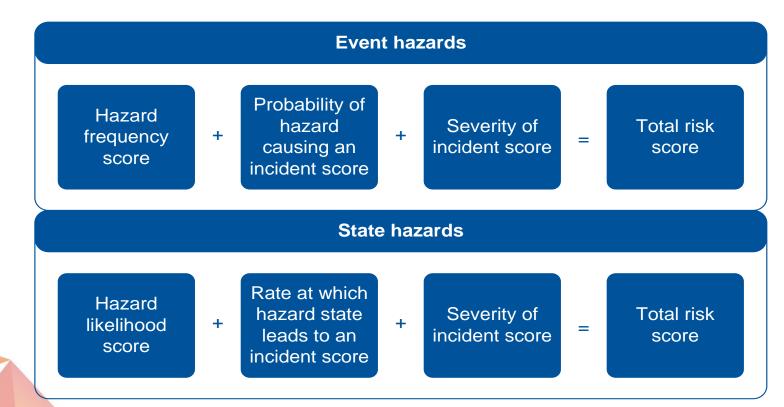
Hazard Log – Scoring

Risk scores for both Event and State hazards consist of three parameters

Each parameter is ranked and given a score

The scores for the three parameters are then added together to give an overall Risk Score:

- Parameters vary depending on whether the hazard is an event or a state
- It is not possible to do direct risk comparisons of event and state hazards


The overall risk can range from:

- Minimum score of E00 / S00
- Maximum score of E12 / S12

A difference of 1 in the overall risk scores implies a 10 times difference in risk e.g. an E08 hazard has a 10 times higher risk than an E07

Hazard Log – Scoring

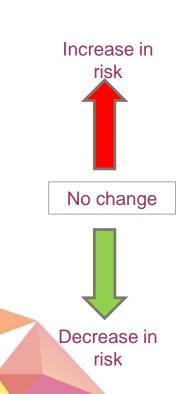
Hazard Log – Frequency Event

Frequency Classification	Nominal Value: Occurrences/year/mile	Index Value		
Very frequent	1000	6.0		
	316	5.5		
Frequent	100	5.0		
	31.6	4.5		
Probable	10	4.0		
	3.16	3.5		
Occasional	1	3.0		
	0.316	2.5		
Remote	0.1	2.0		
	0.0316	1.5		
Improbable	0.01	1.0		
	0.00316	0.5		
Incredible	0.001	0.0		

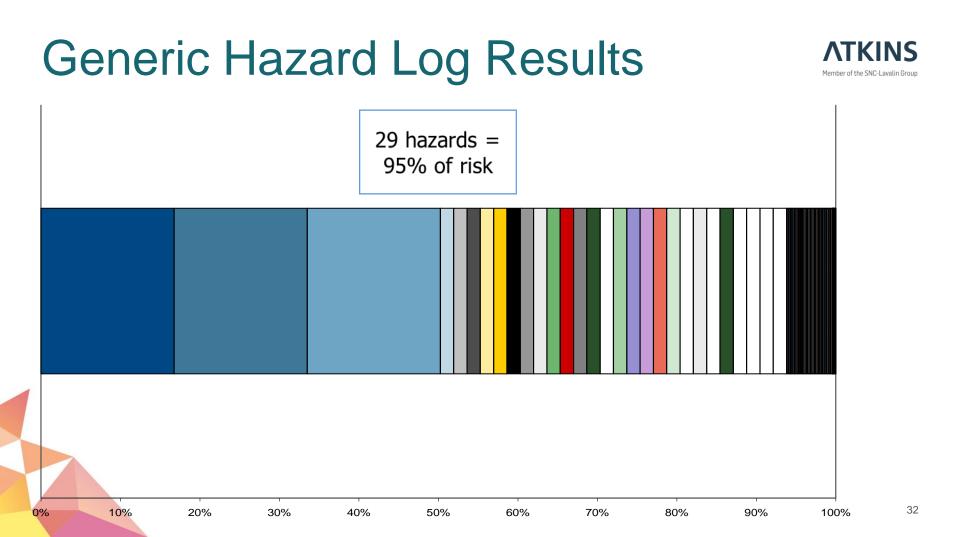
Hazard Log – Frequency State

Likelihood Classification	Interpretation	Index Value
Very frequent	At least 1 occurrence present at any one time per Motorway mile.	6.0
	Present 115 days per year per Motorway mile	5.5
Frequent	Present 36.5 days per year per Motorway mile	5.0
	Present 11.5 days per year per Motorway mile	4.5
Probable	Present 3.65 days per year per Motorway mile	4.0
	Present 1.15 days per year per Motorway mile	3.5
Occasional	Present 9 hours per year per Motorway mile	3.0
	Present 3 hours per year per Motorway mile	2.5
Remote	Present 50 minutes per year per Motorway mile	2.0
	Present 15 minutes per year per Motorway mile	1.5
Improbable	Present 5 minutes per year per Motorway mile	1.0
	Present 90 seconds per year per Motorway mile	0.5
Incredible	Present 30 seconds per year per Motorway mile	0.0

Hazard Log – Probability


Probability that an Event / State causes collisions									
Classification	Events	Value	States						
	If this hazard occurs then:		This hazard, if present, will:						
Certain	A collision is certain	4	Definitely causes a collision						
Probable	A collision is probable	3	Frequently causes a collision						
Occasional	A collision will occasionally happen	2	Occasionally causes a collision						
Remote	There is a remote chance of a collision	1	Infrequently causes a collision						
Improbable	A collision is improbable	0	Rarely causes a collision						

Hazard Log – Severity


Severity Classification	Interpretation	Index Value	Person outside of vehicle	Stationary Vehicle	Motorcycle	Car	Large Vehicle (LHV, HGV, Bus)
Severe	The proportion of collisions that are fatal is expected to be higher than average by at least a factor of 10	2.0	Involved	Involved	Involved	Speed differential approx 60 mph	Speed differential approx 50 mph
Higher than average	The proportion of fatal collisions is expected to be higher than average by a factor between 3 and 10	1.5	No involvement	No involvement	No involvement	Speed differential approx 50 mph	Speed differential approx 40 mph
Average	The distribution of collisions (i.e. ratio of damage-only to fatal) is expected to be similar to the highway average	1.0	No involvement	No involvement	No involvement	Speed differential approx 40 mph	Speed differential approx 30 mph
Lower than average	The proportion of fatal collisions is expected to be lower than average by a factor between 3 and 10	0.5	No involvement	No involvement	No involvement	Speed differential approx 30 mph	Speed differential approx 20 mph
Minor	The proportion of collisions that are fatal is expected to be lower than average by at least a factor of 10	0.0	No involvement	No involvement	No involvement	Speed differential < 20 mph	Speed differential < 10 mph

Variance from 'before' to 'after'

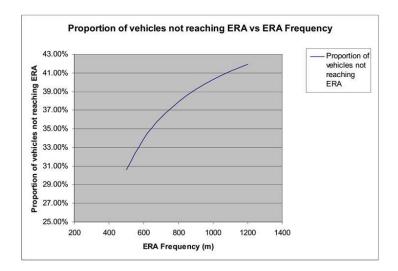
fter scoring values							
/alue	% (+/-)						
+0.5	216% increase in risk (tripling of risk)						
+0.4	150% increase in risk						
+0.3	100% increase in risk (doubling of risk)						
+0.2	60% increase in risk						
+0.1	25% increase in risk						
0.0	No change in risk						
-0.1	20% decrease in risk						
-0.2	35% decrease in risk						
-0.3	50% decrease in risk (risk halved)						
-0.4	60% decrease in risk						
-0.5	70% decrease in risk						
NW CIHT	Young Professionals						

High Scoring Hazards

ID	Title	Туре	D3M Score (Before)	ALR Score (After)	Justification
H138	Driver Fatigued - unable to perceive hazards effectively	Event	9.00	9.00	No change. No benefit from ALR especially off peak when signs and signals are off.
H37	Individual vehicle is driven too fast	State	9.00	8.76	Considerable benefit from the controlled environment during the peak but also benefit off-peak (compliance with national speed limit).
H67	Pedestrian in running lane - live traffic	Event	8.50	8.50	Benefit from the controlled environment. However more instances due to increase in live lane breakdowns
H135	Vehicle Stops in Running Lane - Off Peak (Event)	Event	7.81	8.31	An increase in risk is anticipated reflecting a substantial increase in the frequency of vehicles stopping in a running lane
H76	Rapid change of general vehicle speed	Event	8.50	8.26	Considerable benefit from the controlled environment during the peak
H91	Tail gating	State	8.50	8.20	Considerable benefit from the controlled environment during the peak
H149	Vehicle drifts off carriageway (i.e. leaving the carriageway as a result of Road Environment)	Event	8.00	8.08	Traffic travelling closer to the edge of the carriageway, but better controlled environment during peak. Shallower angle of impact if near side barrier is hit from lane 1. Typically lower speed in lane 1.
H11	Driver ignores closed lane(s) signals that are protecting an incident	Event	8.00	8.00	More robust and more frequent signalling: controlled environment perception for motorists; but more live lane breakdowns and monitoring of first ALR schemes shows lack of driver compliance with Red X signals
H113	Vehicle exits ERA	Event	0.00	8.00	ALR introduced hazard

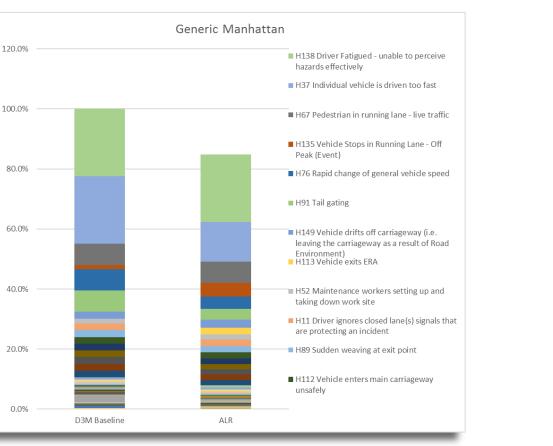
High Scoring Hazards

ID	Title	Туре	D3M Score (Before)	ALR Score (After)	Justification
H113	Vehicle exits ERA	Event	0.00	8.00	ALR introduced hazard
	Sudden weaving at exit point	Event	8.00	7.98	Some benefit from controlled environment
H112	Vehicle enters main carriageway unsafely	Event	8.00	7.94	Some benefit from controlled environment based upon optimum provision as outlined through an overrun assessment
H54	Motorcycles filter through traffic	Event	8.00	7.90	Benefit from controlled environment. Smoother traffic travelling at higher speeds - less need to filter through
H120	Vehicle rejoins running lane from hardshoulder/verge	Event	8.00	7.90	Non-emergency stops are effectively eliminated and most remaining stops will be in refuge areas
H121	Vehicle reversing along exit slip	Event	8.00	7.90	Some benefit from controlled environment
H13	Driver loses control of vehicle	Event	8.00	7.90	Some benefit from controlled environment
H103	Unsafe lane changing (mid link)	Event	8.00	7.88	Some benefit from controlled environment
	Maintenance workers setting up and taking down work site	State	7.86	7.86	Although there is benefit from the controlled environment (setting of signals during set-up and taking-down), the number of times TM is used is expected to increase
H154	Vehicle stopped on hard shoulder (D3M) or verge (ALR)	State	8.00	6.50	Effectively eliminated. Non emergency stops are reduced and most remaining stops will be in refuge areas.

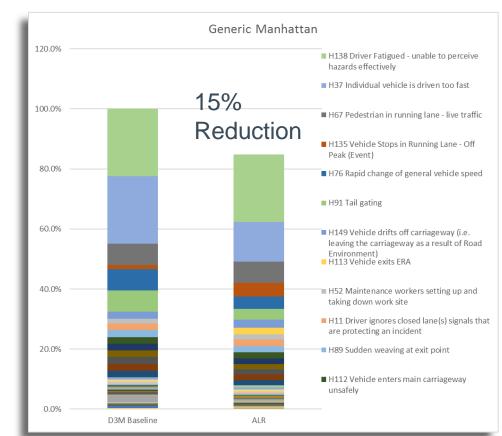

H135 - Vehicle Stops in Running Lane Off Peak (Event)

- 216% increase in risk.
- MIDAS Queue Protection not effective in the off-peak.
- Mitigated by:
- CCTV
- Controlled Environment
- ERAs (and other safe havens)

H135 - Vehicle Stops in Running Lane


Off Peak (Event)

- 'Safe Haven model' (Oscar Faber 2001) assumes 50% of breakdowns unable to continue.
- The other 50% can be split into two equal groups:
- Vehicles that can continue under power for a considerable distance.
- Vehicles that can only coast for a modest distance.
- As spacing increases the ability coast to an ERA becomes less significant.

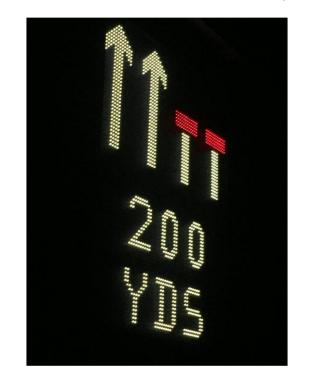

Generic Hazard Log Results

Generic Hazard Log Results

Hazard Log - Summary

Hazard Log Does

- Help prioritise hazards to enable projects to focus on highest risk hazards
- Provide 'before' and 'after' comparison
- Consider different populations
- Support construction of a qualitative argument for the safety of a scheme


Hazard Log is/does not

- A crystal ball
- A collision and casualty prediction tool
- Provide a precise accurate quantitative result
- Designed to analyse specific locations or single issues
- Look at hazards during the construction period

Smart Motorway Outcomes

Infrastructure

- Remotely Operated Temporary Traffic Management Signs.
- Fixed Access to gantries.
- Off-Network Access.
- Rigid Concrete Barrier
- Radar based MIDAS detection.

Smart Motorway Outcomes

Process

A clear and costeffective process for the management of safety on projects

Improved consistency in the management of safety on projects

> Helps to identify areas where additional risk reduction can be obtained

Set realistic safety targets and enable measurement against Highways England objectives

Member of the SNC-Lavalin Group

Promote an auditable trail of decision-making within the safety management process that will be robust and defensible

Smart Motorway Outcomes IAN 191/16

- Links directly with GD04/12 Safety Risk Assessment on the SRN.
- Applies to all administrative and technical aspects of the design, construction, operation and maintenance of the SRN.
- Relies on the service providers procedures or practice to fulfil the requirements.
- Main requirements are:
 - Part 1 Safety Management System (SMS) Selection
 - Part 2 Implementation of SMS

Member of the SNC-Lavalin Group

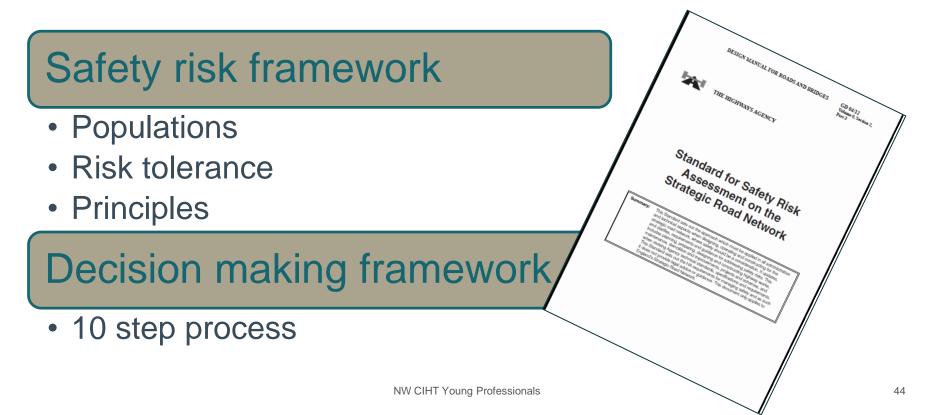
Smart Motorway Outcomes

Type A

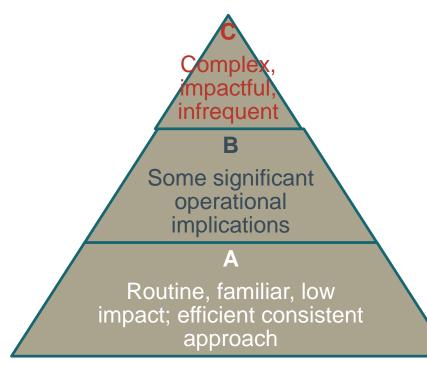
- **Example** Simple junction improvement.
- **Summary** Very common projects and tend to be generic.
- **Approval** PM/Highways England PM.
- **Consulted** Specialist in the relevant field and Ops Safety Lead.
- Atkins Examples M62 J30-32 Technology Scheme, Smart Motorway SVD Trial and M62 J26 Junction Improvement

Type B

- Example Smart Motorway Scheme.
- **Summary** Less common projects and have some unique challenges.
- **Approval** Project Safety Control Review Group and National Safety Control Review Group if appropriate.
- **Consulted** PSCRG and Ops Safety Lead.
- Atkins Examples M1 J19-16 SM-ALR and the M25 J30/A13 Congestion Relieving Corridor Scheme.


Type C

- Example Introduction of the Traffic Officer Service
- **Summary** Bespoke or unique projects.
- **Approval** National Safety Control Review Group.
- **Consulted** Professional Ops Safety Advisors.
- Atkins Examples Dartford free flow link


Smart Motorway Outcomes

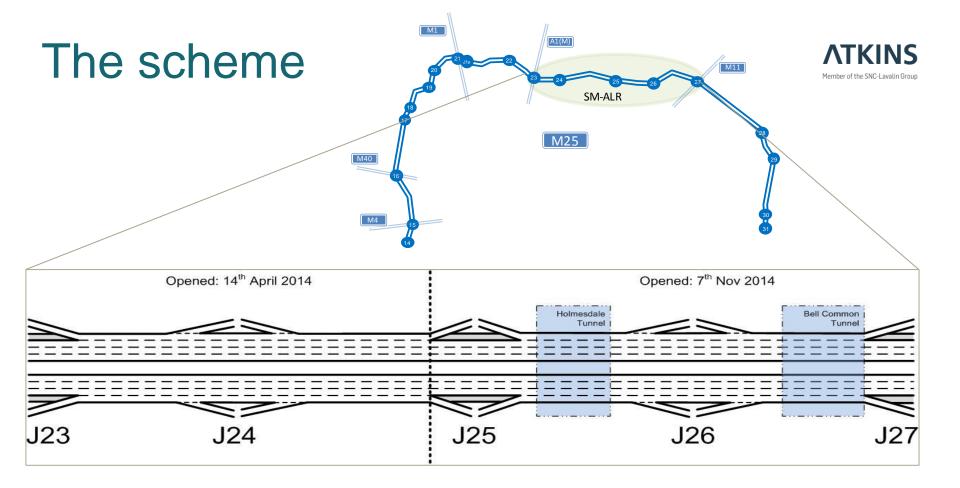
GD04/12 - Standard for Safety Risk Assessment on the Strategic Road Network

Smart Motorway Outcomes GD04/12 Decision Types

Appropriate assessment, evaluation and management

- Size of decision impact?
- Cost implications?
- Decision lifetime?
- Level of safety risk / uncertainty?
- Level of policy or stakeholder interest?

Member of the SNC-Lavalin Group


The emerging evidence

NW CIHT Young Professionals

The M25 J23-27 (Section 5)

M25 J23-J	27	
Flows	J23-6: Significant (10%) flow increase achieved and capacity for more growth In particular 17% J24-25 CW. All higher than national trends.	
Average journey time	JTs returned close to pre-scheme levels but have been worse if scheme not built. CW 3% increase overall, ACW 0.5% decrease.	
Journey time reliability	Slight improvement day-to-day on both carriageways	$\widehat{\mathbf{t}}$
Safety	No significant change after taking into account background trends. Scheme has met its safety objectives.	

41-50

Speed Bands (mph)

51-60

61-70

71-80

81-90

90+

40% **Lobortion of Vehicles** 335% 30% 25% 20% 15% 15% 10% 5%

Speeds

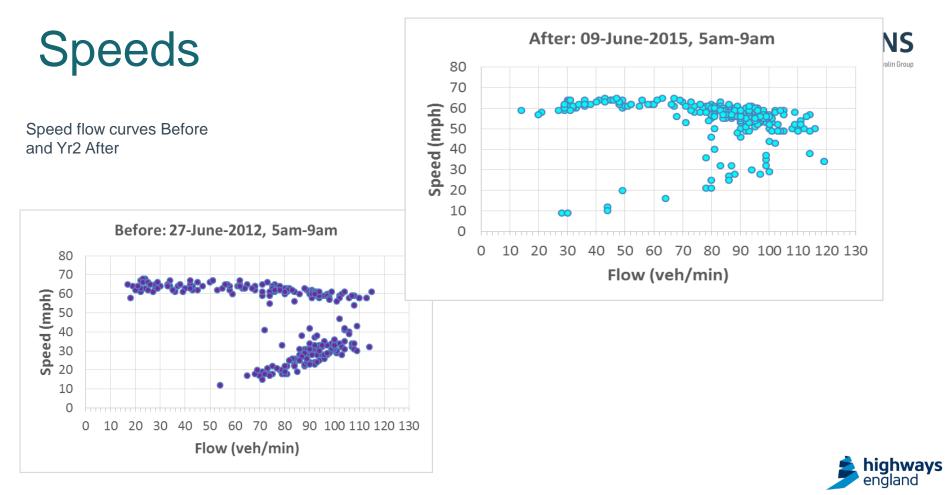
Speeds distribution Before and Yr2 After 50%

45%

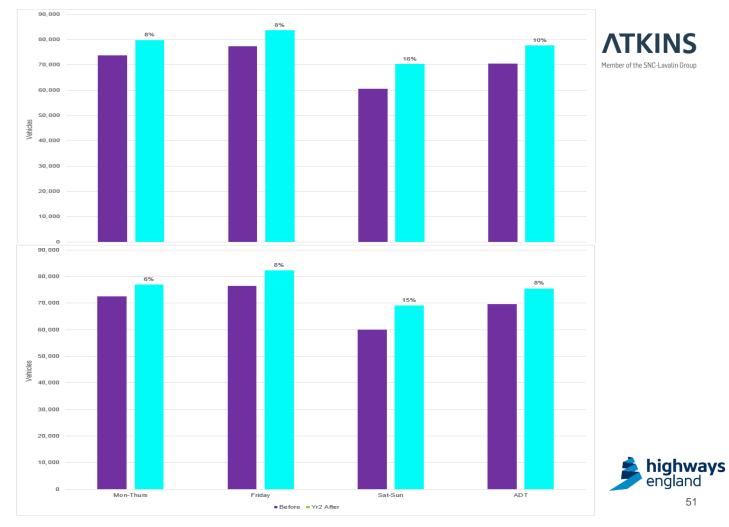
0%

0-10

11-20


21-30

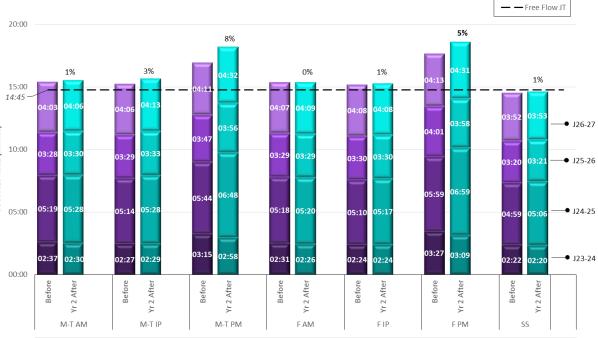
31-40


Before After

Flow

Average daily traffic by day type J23-J24 clockwise

Average daily traffic by day type J23-J24 anticlockwise


JOURNEY TIME (MM:SS) 10:00 03:28 03:30 03:33 03:29

Clockwise journey time comparison

TIME PERIOD

ATKINS Member of the SNC-Lavalin Group

Journey Time

FAM

TIME PERIOD

-0.5%

04:21

03:30 03:39

05:39 05:40

02:37 02:32

2 After

Ł

M-T PM

Before

03:52 03:49

06:07 05:53

02:42

Before Yr 2 After

02:55

Anticlockwise journey time comparison

4% 05:00 0.5% 15:00 04:09 04:10 14:45 04.0 (MM:SS) 05:13 04:45

03:27

05:25 05:39

02:31 02:30

Yr 2 After

M-T IP

Before

03:40

-5%

06:24 06:47

03:14 02:48

M-T AM

Before Yr 2 After

Journey Time

25:00

20:00

10:00

05:00

00:00

JOURNEY TIME

- Free Flow JT

-1%

• J26-27

- J25-26

- J24-25

03:54

03:23 03:22

05:20

Before

05:18

1%

04:06

03:32 03:43

05:40 05:40

02:36 02:35

Yr 2 After

FPM

Before

-2%

03:45

04:12 04:1

03:49

05:47 05:36

02:38 02:34

FIP

Before Yr 2 After

Number of collisions by severity and collision rates

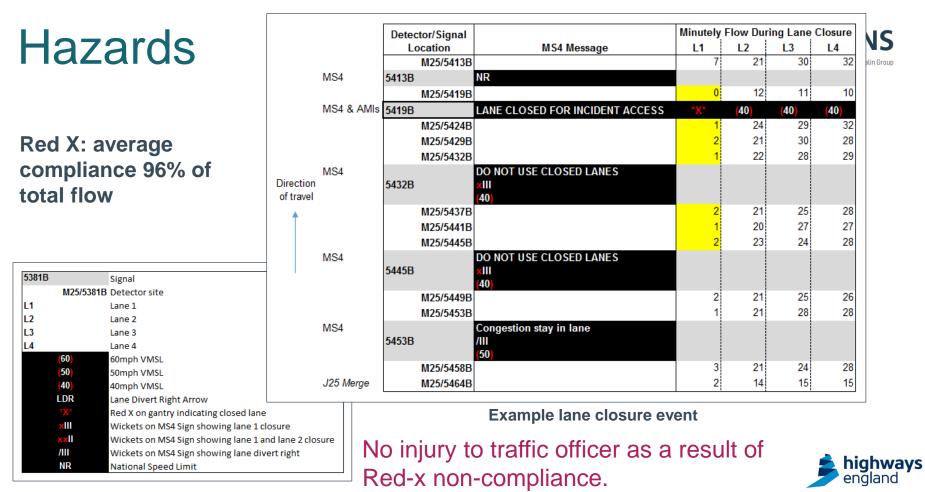
Period		Fatal	Serious	Fatal & serious	Slight	Total
	Year 1	1	11	12	85	97
	Year 2	2	11	13	88	101
	Year 3	1	5	6	87	93
Before	Total	4	27	31	260	291
	Collision rate (collisions per hmvm) (22.6 hmvm)	0.177	1.194	1.371	11.500	12.871
	Collision rate (collisions per mvkm) (3,641 mvkm)	0.001	0.007	0.009	0.071	0.080
	Year 1	2	3	5	55	60
	Year 2	1	9	10	93	103
After*	Total	3	12	15	148	163
	Collision rate (collisions per hmvm) (14.2 hmvm)	0.212	0.847	1.059	10.444	11.502
	Collision rate (collisions per mvkm) (2,281 mvkm)	0.001	0.005	0.007	0.065	0.071

Number of collisions and collision rates following national trends

Period	Number of collisions	Collision rate (collisions per hmvm)	Collision rate (collisions per mvkm)
Annual average Before period	97.00	12.87	0.080
Counter factual Before period	92.52	11.41	0.071
After*	163		
Annual average After period	93.14	11.50	0.071

Number of casualties and FWI rate

	Severity					FWI rate per	FWI rate per	
Period	Fatal	Serious	Slight	Total	FWI	hmvm	bvkm	
Before (36 months) (22.6 hmvm, 3.64 bvkm)	4	36	401	441	11.61	0.51	3.19	
After* (14.2 hmvm, 2.28 bvkm)	3	16	233	252	6.93	0.49	3.04	



Total KSI and KSI rate

Period	Total KSI	KSI rate per hmvm	KSI rate per bvkm	
Before (36 months) (22.6 hmvm, 3.64 bvkm)	40	1.77	10.99	
After* (14.2 hmvm, 2.28 bvkm)	19	1.34	8.33	

NW CIHT Young Professionals

ERA Misuse?

Activity	Number	Percentage of all stops	Summary of ERA activity
Emergency Refuge Telephone (ERT) used	4	3%	
Highways England Traffic Officer attended	8	7%	
Non-emergency (e.g. drove off without exiting vehicle, comfort break etc.)	97	82%	
Genuine reason (e.g. problem with vehicle)	22	18%	

Vehicle types using ERAs	Vehicle type	Number of ERA stops	Percentage of total	Non-emergency	Genuine emergency
using ERAS	Car	52	44%	75%	25%
	Van	30	25%	83%	17%
No collisions	HGV	32	27%	91%	9%
No collisions related to vehicles	LGV	5	4%	80%	20%
	Total	119		82%	18%
exiting an ERA.					🚖 highwa

2 Year Evaluation

Other findings

The fatal collisions were:

- A stowaway incident where a pedestrian climbed out from underneath a vehicle and was run over.
- A suspected suicide attempt where a car pulled out from the nearside verge (actually a very short length of hard shoulder) into the path of an HGV in lane 1 causing the HGV to swerve and collide with another HGV causing a crossover and ultimately the fatality of an HGV occupant on the opposite carriageway.
- A slow moving / stationary vehicle in lane 1 was struck by another vehicle.

No collisions involving road workers were recorded.

Evidence

Summary

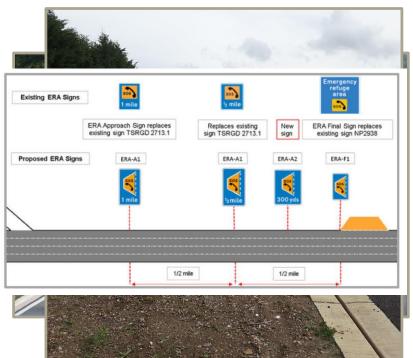
- The two years of post opening results from the M25 Section 2 and Section 5 schemes show:
- They are meeting their road user safety objectives.
- The reduction in collisions is not statistically significant.
- M25 Year 3 and Year 1 evaluation expected on a number of other scheme very soon!
- Post Opening Operational Monitoring indicates issue with Red-x non-compliance.

Can we make Smart Motorways Safer?

Transport Select Committee

Review of "All Lane Running"

- Accepted the use of Smart Motorways as an alternative to widening. However:
 - DfT wrong to present ALR as the next step or logical extension.
 - Risks arising from permanent conversion an unacceptable price to pay.
 - ERAs too far apart and too small.
 - Red-x non-compliance too high.
 - Redouble efforts to increase public awareness.
- Recommended reverting to M42 style Smart Motorway.

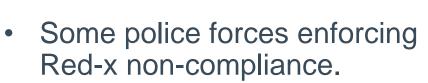

NW CIHT Young Professionals

64

Improving ERAs

Mitigating Hazard 135

- M3 and M1 J19-16 schemes first • to have orange ERAs.
- Additional and enhanced advance traffic signs.
- Rebranded as 'Emergency Areas'
- Spacing to be reduced from 2500m guidance.
- Retrospective changes.
- Will misuse increase?

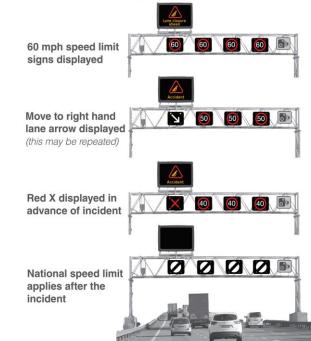

Stationary Vehicle Detection Mitigating Hazard 135

- MIDAS Queue Protection not effective in the off-peak.
- Trials of SVD completed on M62 J25-30 and M25 LUS Section 2.
- All key performance requirement targets met or exceeded: coverage, detection rate, false detection frequency, detection time.
- Significant reduction in time to notify RCC of stopped vehicle using SVD system.
- HE commitment to proceed with roll out of SVD on all ALR schemes.

Member of the SNC-Lavalin Group

Enforcement and Education

• Camera based enforcement expected in 2018.


https://youtu.be/_C5oDYA6hkY

 Know your smart motorways: <u>https://www.gov.uk/guidance/ho</u> <u>w-to-drive-on-a-smart-</u> <u>motorway</u>

Signs above each lane

Thank you – Questions?

If you'd like to find out more visit: www.atkinsglobal.com

© Atkins Limited except where stated otherwise.

The Atkins logo, 'Carbon Critical Design' and the strapline 'Plan Design Enable' are trademarks of Atkins Limited.